Friday, February 13, 2009

DO and BOD

DO
Oxygen is measured in its dissolved form as dissolved oxygen (DO).
DO is measured either in milligrams per liter (mg/L) or "percent saturation." Milligrams per liter is the amount of oxygen in a liter of water. Percent saturation is the amount of oxygen in a liter of water relative to the total amount of oxygen that the water can hold at that temperature.
A dissolved oxygen meter is an electronic device that converts signals from a probe that is placed in the water into units of DO in milligrams per liter. Most meters and probes also measure temperature. The probe is filled with a salt solution and has a selectively permeable membrane that allows DO to pass from the stream water into the salt solution. The DO that has diffused into the salt solution changes the electric potential of the salt solution and this change is sent by electric cable to the meter, which converts the signal to milligrams per liter on a scale

BOD
The amount of oxygen consumed by these organisms in breaking down the waste is known as the biochemical oxygen demand or BOD.
BOD also measures the chemical oxidation of inorganic matter (i.e., the extraction of oxygen from water via chemical reaction). A test is used to measure the amount of oxygen consumed by these organisms during a specified period of time (usually 5 days at 20 C). The rate of oxygen consumption in a stream is affected by a number of variables: temperature, pH, the presence of certain kinds of microorganisms, and the type of organic and inorganic material in the water.
BOD directly affects the amount of dissolved oxygen in rivers and streams. The greater the BOD, the more rapidly oxygen is depleted in the stream. This means less oxygen is available to higher forms of aquatic life. The consequences of high BOD are the same as those for low dissolved oxygen: aquatic organisms become stressed, suffocate, and die.
BOD measurement requires taking two samples at each site. One is tested immediately for dissolved oxygen, and the second is incubated in the dark at 20 C for 5 days and then tested for the amount of dissolved oxygen remaining.
The difference in oxygen levels between the first test and the second test, in milligrams per liter (mg/L), is the amount of BOD.
This represents the amount of oxygen consumed by microorganisms to break down the organic matter present in the sample bottle during the incubation period. Because of the 5-day incubation, the tests should be conducted in a laboratory.
Sometimes by the end of the 5-day incubation period the dissolved oxygen level is zero. This is especially true for rivers and streams with a lot of organic pollution. Since it is not known when the zero point was reached, it is not possible to tell what the BOD level is.
In this case it is necessary to dilute the original sample by a factor that results in a final dissolved oxygen level of at least 2 mg/L. Special dilution water should be used for the dilutions. (See APHA, 1992.) It takes some experimentation to determine the appropriate dilution factor for a particular sampling site. The final result is the difference in dissolved oxygen between the first measurement and the second after multiplying the second result by the dilution factor.
The first bottle should be analyzed just prior to storing the second sample bottle in the dark for 5 days at 20 C. After this time, the second bottle is tested for dissolved oxygen using the same method that was used for the first bottle. The BOD is expressed in milligrams per liter of DO using the following equation:
DO (mg/L) of first bottle - DO (mg/L) of second bottle = BOD (mg/L)

1 comment: